If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=5=25
We move all terms to the left:
x^2-(5)=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $
| 5x-(2x+18)=16 | | 2t-15=-30+5t | | n+32=42 | | -x+7(3-7)=-129 | | -x=x2-2 | | x(2x+5)=4(x=7) | | 351=(y×8)+7 | | 9x-6=5-8x | | 60/3x-30/2x=30/3 | | 7-1x=-5 | | -147=7(4x+7) | | 132=-4(7+5v) | | 18x+99x-19=13(9x+14) | | -2(1+7x)-8x=-134 | | 2(2m+6)=-9m+28 | | -272=4(-4+7a)+4a | | 8(2x-1)-2=10(x+2)+6 | | 26=x+x+6 | | 124=-7k+5(-7k+8) | | 168=8(-4n-1) | | 2(-x-7)=-(5x-7) | | 7x+38x-9=9(5x+10) | | 168=8(4n-1) | | 4(-3b-4)=-88 | | x+3/4=2x-1/4 | | -3(2x+3)-5=4 | | 196=-4(7+8v) | | -85=5+5(2x-4) | | 5x+2-6x=4x-6-7 | | 6x-9=2x+14+3x+2 | | 14.5+p=53 | | 5x-3(x-3)=-9+4x+4 |